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Authorship attribution

Definition: Authorship attribution (AA) is the task of
determining the most likely author of a given text

Formalization of the AA problem:

• closed-set configuration (predefined number of
authors/classes)

• open-set configuration (open test space to unknown
authors/classes)
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Software authorship attribution

Identify the author of a code fragment.

Problem relevance
Software authorship identification applications in software
development: software quality, legacy software systems,
software archaeology, fraud/plagiarism detection activities in
education

In software engineering:

• practical use in multiple scenarios

• e.g. maximize the benefit of the code review process given
time and other constraints by using AA model to select or
prioritize code to review
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Proposed model: SoftId

Autoencoder-based model to solve the software authorship
attribution problem (SAA) in an open-set configuration.

Dataset: three subsets from Google Code Jam data set (3, 5
and 12 “original” developers) and additional “unknown”
instances
Representation: TF-IDF, LSI

Contributions

1 development of an autoencoder-based one-class
classification model (SoftId) that solves the SAA problem
in an open-set configuration

2 representation of source code using natural language
processing techniques

3 performance improvement over other one-class classifiers
like OSVM
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Research questions

RQ1 How to design an autoencoder-based one-class classifier
for solving software authorship identification as an
open-set-recognition problem?

RQ2 What is the relevance of the textual representation of
source codes in discriminating between original (known)
and other (unknown) software developers?

RQ3 Which of the two corpus-based representations, term
frequency - inverse document frequency) (TF-IDF) or
Latent Semantic Indexing (LSI), is better suited for our
approach?
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Related work

• Software authorship identification: popular domain
with various approaches [KKG+20];

• textual representations of source codes: [ARA+19]
(document embeddings used to identify the author of a
program), [SAS14] (character N-gram based LSA model to
create low approximation of data & obtain document pair
similarities), [MM00] (LSA to identify similarities between
pieces of source code to assist in program understanding),
[BVE15] (TF-IDF and LSA compared in task of detecting
semantic re-implementations)

• open-set configuration: [BTGD21] (data set: Victorian
literature), [KS04] (AA formalized as true one-class
classification problem)
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Autoencoders (AE)

• deep learning models used in medical data analysis, image
analysis, bioinformatics and other fields

• self-supervised learning technique

Figure: Autoencoder (AE) model1

1https://towardsdatascience.com/
applied-deep-learning-part-3-autoencoders-1c083af4d798

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
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Problem statement

Formalization as an open-set binary supervised
classification problem.

• set of k known software developers (authors)
Sd = {Sd1,Sd2, . . .Sdk}
• SC = Sc1 ∪ Sc2 ∪ · · · ∪ Sck a set of software codes, known

to be written by the given k authors

• GOAL: approximate a function
t : SC → {“original ′′, “other ′′} that maps a software code
sc ∈ SC to either the “original” class (formed by the
known developers from Sd) or the “other” class
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The SoftId model

• the SoftId classifier consists of an autoencoder trained to
encode patterns from the software codes belonging to
authors from the set Sd
• at testing time, classifier will be able to decide if a given
source code is authored by a known (developer from Sd)
or an unknown one
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Data preprocessing & representation

Data preprocessing
Tokenization

Data representation

• TF-IDF (term frequency-inverse document frequency)

• LSI (Latent Semantic Indexing)
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Training (I)

Autoencoder A trained on Sc =
k⋃

i=1

Sci (the software codes

authored by all the developers from Sd)

Train-validation-test split

• 70% will be used for training

• 20% will be used for validation

• 10% will be used for testing

Loss function
L(x̃ , x) = 1

m

∑m
j=1(x̃j − xj)

2

x represents the m-dimensional input
x̃ represents the model’s m-dimensional output
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Training (II)

AE architectures

• for TF-IDF vectors of size 4000: input layer +
2048-1024-512-256-512-1024-2048

• for LSI vectors of size 300: input layer +
256-128-64-32-64-128-256

Model details

• hidden layers use ReLU activation function

• encoding layer uses linear activation

• network trained using stochastic gradient descent +
Adam optimizer

• mini-batch perspective

• early stopping criterion - loss convergence on validation set
is monitored (min delta = 0.000025)
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Testing & evaluation: Classification

Algorithm Classification for the testing source code sc .

function Classify(Sd ,A, sc)
Require:
Sd - the set of original software developers; A - the AE trained to recognize
the developers from Sd ;
sc - the testing instance (source code) to be classified

Ensure:
return the predicted class (“original” or “other”)

vecsc ← the vector representation of sc

pother (sc) = 0.5 + D(vecsc ,v̂ecsc )−τ
2·(D(vecsc ,v̂ecsc )+τ)

/* Compute the probability that

sc belongs to the “other” class*/
if pother (sc) ≥ 0.5 then

c ← “other”
else

c ← “original”
end if
return c

end function
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Testing & evaluation: Evaluation

• cross-validation methodology: train/validation/test split
repeated 10 times

• within each split, selection of “other” instances also
repeated 10 times
• performance metrics:

1 accuracy (Acc)
2 precision (Prec) for the “original” class
3 Recall
4 F1-score
5 specificity (Spec)
6 Area under the ROC curve (AUC) [Faw06]
7 Area under the Precision-Recall curve (AUPRC)
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Dataset description

Subsets of the Google Code Jam [Goo] (GCJ) data set are used.

• subset of 3 original developers (709 software programs)

• subset of 5 original developers (1110 software programs)

• subset of 12 original developers (2325 software programs)

• software programs belonging to the “other” class
randomly selected from the remaining instances in GCJ
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Results (I)

Table: Performance metrics obtained by evaluating SoftId classifier
on the Google Code Jam data set. 95% CI are used for the results.

No. of original N-grams TF-IDF representation LSI representation
authors Acc Prec Recall F1 Spec AUC AUPRC Acc Prec Recall F1 Spec AUC AUPRC

5-grams 0.947 1.000 0.941 0.970 1.000 0.971 0.971 0.932 1.000 0.926 0.961 1.000 0.963 0.963
±0.006 ± 0.000 ± 0.007 ± 0.003 ± 0.000 ± 0.003 ± 0.003 ±0.012 ±0.000 ±0.013 ±0.007 ±0.000 ±0.007 ±0.07

6-grams 0.943 1.000 0.937 0.967 1.000 0.969 0.969 0.936 1.000 0.930 0.964 1.000 0.965 0.965
±0.010 ± 0.000 ± 0.011 ± 0.006 ± 0.000 ± 0.006 ± 0.006 ±0.013 ±0.000 ±0.015 ±0.008 ±0.000 ±0.007 ±0.007

3 8-grams 0.939 1.000 0.933 0.965 1.000 0.966 0.966 0.936 1.000 0.930 0.964 1.000 0.965 0.965
±0.014 ± 0.000 ± 0.016 ± 0.009 ± 0.000 ± 0.008 ± 0.008 ±0.016 ±0.000 ±0.017 ±0.010 ±0.000 ±0.009 ±0.009

10-grams 0.926 1.000 0.919 0.957 1.000 0.959 0.959 0.923 1.000 0.916 0.956 1.000 0.958 0.958
±0.015 ± 0.000 ± 0.017 ± 0.009 ± 0.000 ± 0.008 ± 0.008 ±0.013 ±0.000 ±0.015 ±0.008 ±0.000 ±0.007 ±0.007

5-grams 0.943 0.995 0.943 0.968 0.950 0.946 0.969 0.929 0.999 0.923 0.959 0.988 0.955 0.961
±0.013 ±0.002 ±0.014 ±0.007 ±0.016 ±0.015 ±0.008 ±0.015 ±0.001 ±0.016 ±0.009 ±0.007 ±0.012 ±0.008

6-grams 0.941 0.994 0.940 0.966 0.947 0.944 0.967 0.933 0.998 0.928 0.962 0.982 0.955 0.963
±0.017 ±0.001 ±0.018 ±0.010 ±0.010 ±0.014 ±0.010 ±0.020 ±0.001 ±0.022 ±0.012 ±0.008 ±0.015 ±0.011

5 8-grams 0.947 0.996 0.945 0.970 0.962 0.954 0.971 0.934 0.999 0.928 0.962 0.988 0.958 0.963
±0.013 ±0.001 ±0.014 ±0.007 ±0.009 ±0.012 ±0.007 ±0.016 ±0.001 ±0.018 ±0.010 ±0.005 ±0.012 ±0.009

10-grams 0.937 0.996 0.935 0.964 0.964 0.949 0.965 0.921 0.998 0.915 0.954 0.983 0.949 0.956
±0.013 ±0.001 ±0.015 ±0.008 ±0.010 ±0.012 ±0.008 ±0.014 ±0.001 ±0.015 ±0.008 ±0.005 ±0.010 ±0.008

5-grams 0.915 0.965 0.941 0.953 0.656 0.798 0.953 0.902 0.979 0.912 0.944 0.798 0.855 0.945
±0.007 ±0.003 0.008 ±0.004 ±0.027 ±0.017 ±0.005 ±0.008 ±0.002 ±0.009 ±0.005 ±0.016 ±0.013 ±0.005

6-grams 0.914 0.971 0.934 0.952 0.716 0.825 0.952 0.903 0.982 0.910 0.945 0.834 0.872 0.946
±0.008 ±0.002 ±0.009 ±0.005 ±0.021 ±0.015 ±0.005 ±0.010 ±0.002 ±0.011 ±0.006 ±0.017 ±0.014 ±0.006

12 8-grams 0.904 0.976 0.917 0.945 0.772 0.845 0.946 0.912 0.981 0.920 0.950 0.823 0.871 0.951
±0.012 ±0.002 ±0.013 ±0.007 ±0.020 ±0.017 ±0.008 ±0.009 ± 0.002 ±0.009 ±0.006 ±0.023 ±0.016 ±0.006

10-grams 0.873 0.982 0.877 0.926 0.838 0.857 0.929 0.874 0.980 0.880 0.927 0.820 0.850 0.930
±0.011 ±0.002 ±0.012 ±0.007 ±0.016 ±0.014 ±0.007 ±0.011 ±0.003 ±0.011 ±0.007 ±0.023 ±0.017 0.007
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Results (II)

Table: Improvement achieved by SoftId classifier compared to OSVM.
For a performance measure P, the table depicts the value
P(SoftId)-P(OSVM).

No. of original N-grams TF-IDF representation LSI representation
authors Acc Prec Recall F1 Spec AUC AUPRC Acc Prec Recall F1 Spec AUC AUPRC

5-grams 0.043 0.008 0.040 0.025 0.071 0.056 0.024 0.038 0.011 0..031 0.023 0.107 0.069 0.021
6-grams 0.058 0.008 0.056 0.035 0.077 0.066 0.032 0.058 0.011 0.053 0.035 0.104 0.079 0.032

3 8-grams 0.039 0.000 0.043 0.024 0.000 0.021 0.021 0.044 0.003 0.046 0.027 0.027 0.036 0.024
10-grams 0.043 0.000 0.047 0.027 0.000 0.024 0.024 0.044 0.010 0.039 0.027 0.099 0.069 0.025

5-grams 0.072 0.022 0.060 0.042 0.196 0.128 0.041 0.077 0.042 0.045 0.044 0.388 0.217 0.044
6-grams 0.075 0.015 0.070 0.045 0.129 0.100 0.042 0.085 0.021 0.075 0.051 0.185 0.130 0.048

5 8-grams 0.075 0.000 0.083 0.046 -0.005 0.039 0.041 0.065 0.011 0.062 0.040 0.095 0.078 0.036
10-grams 0.077 -0.001 0.086 0.048 -0.012 0.037 0.043 0.069 0.016 0.062 0.042 0.141 0.101 0.039

5-grams 0.072 0.031 0.050 0.041 0.292 0.171 0.041 0.085 0.063 0.032 0.047 0.619 0.325 0.047
6-grams 0.077 0.031 0.057 0.045 0.282 0.169 0.044 0.071 0.043 0.039 0.041 0.398 0.218 0.041

12 8-grams 0.058 0.018 0.048 0.034 0.155 0.102 0.033 0.078 0.027 0.061 0.046 0.241 0.151 0.044
10-grams 0.059 0.011 0.056 0.037 0.087 0.071 0.034 0.071 0.020 0.061 0.044 0.173 0.117 0.041
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Conclusions

• the SoftId classifier successfully solves the software
authorship attribution task in an open-set configuration

• SoftId outperforms the One-Class SVM classifier in an
overwhelming majority of testing configurations with
respect to all performance measures

• the textual representations used are relevant for
distinguishing between authors

• future work: evaluate SoftId on data sets collected from
software development teams
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